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Abstract: The processing and analysis are 
described of range data in a time-of-flight 
imaging system based on time-correlated single 
photon counting. The system is capable of 
acquiring range data accurate to 1Opm at a stand- 
off distance in the order of lm,  although this can 
be varied substantially. It is shown how fitting of 
the pulsed histogram data by a combination of a 
symmetric key and polynomial functions can 
improve the accuracy and robustness of the depth 
data, in comparison with methods based on 
upsampling and centroid estimation. The imaging 
capability of the system is also demonstrated. 

1 Introduction 

Time-correlated single photon counting (TCSPC) is a 
statistical sampling technique with single photon detec- 
tion sensitivity, capable of picosecond timing resolution 
[ 11, This technique offers two significant advantages 
over previous methods for laser ranging based on time- 
of-flight [2-51; very accurate time (and hence distance) 
resolution and very high sensitivity. 

Fig. 1 shows a schematic diagram of our sensor, 
which is described fully elsewhere [6]. A photograph of 
the optical head is shown in Fig. 2. 

The optical source is a passively Q-switched AlGaAs 
laser diode (developed at the Ioffe Institute, St. Peters- 
burg, Russia), which emits 10-2Ops pulses of energy - 
lOpJ at 850nm and a repetition frequency of up to 
25 MHz. These pulses are directed towards the target 
and returned through a series of wave plates, beam- 
splitters and a suitable objective lens. An alternative, 
known reference channel is provided by a fixed optical 
fibre. A fraction of each optical pulse is split off and 
sent to a trigger avalanche photodiode (APD), which 
acts as a trigger to a single photon counting (SPC) elec- 
tronics module. A constant fraction discriminator 
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(CFD) is used to determine the temporal location of 
this reference pulse, which provides the START input 
for a time-to-amplitude converter (TAC). 

Photons scattered from either the target or reference 
are detected by an actively quenched single photon 
avalanche diode (SPAD), which provides the STOP 
input to the TAC. The elapsed time between the 
START and STOP pulses fixes the output voltage of 
the TAC, and hence gives the distance to the target. 
Using a target and reference to define the distance, 
rather than using the APD signal as a sole reference, 
enables us to balance any temporal variation in the 
SPAD signal channel. 

The SPAD, developed at the Polytechnic0 di Milano, 
is a key element of our system. Besides the general 
advantages found in using solid-state devices, when 
compared with photomultipliers these detectors exhibit 
superior photon detection efficiency, and faster and 
cleaner time response [7, 81. The width of the instru- 
mental response (full width at half maximum, FWHM) 
obtained from the detectors can be less than Sops. The 
small active area (- 7 pm diameter) presents a consider- 
able advantage in our application, making possible 
high spatial resolution and low sensitivity to spurious 
back scatter. An active quenching circuit (AQC) is used 
to fully exploit the performance of the detectors [9]. 

Fig. 3 shows an example of a histogram obtained 
from the photon counting system and represents the 
number of detected photons (vertical axis) versus time 
(horizontal axis). The horizontal axis is defined as sam- 
pled channels; each channel corresponds to 2 .44~s.  The 
two peaks correspond to the accumulated target (left) 
and reference (right) single photon returns. The aim of 
the data analysis is to obtain the time lag (z) between 
the reflected target and reference signals in the histo- 
gram of counted photons obtained by the SPC module. 
The distance between the target and reference d is then 
cd2, where c is the speed of the laser light. 

In this paper, we consider how data analysis tech- 
niques can significantly improve the time resolution of 
the TCSPC system. 

2 Formation of pulse histogram 

The accumulated target and reference single photon 
returns are stored in the SPC board memory. The 
number of counts in each channel ci follows a Poisson 
probability distribution with a mean ni and a variance 
ni [l], where ni is the number of observed counts in 
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Fig. 3 Target and vekrence pulse histogram 

channel e,. ln addition to the counting uncertainty, the 
pulse histogram is contaminated with spurious (dark) 
counts. To minimise this effect, an estimated dark 
count is subtracted from the pulse histogram channel 
by channel. 

Another source of distortion in the observed pulse 
histogram is ‘pulse pile up’. Reflected photons arrive at 
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the SPAD randomly and follow a Poisson probability 
distribution in time. For each laser pulse, there is a 
finite probability that more than one photon will arrive 
at the detector. In which case the first received photon 
is registered, causing a ‘pile-up’ in the lower channels. 
Coates [lo] derived a correction factor which has been 
applied to correct the ‘pile-up’ distortion at high pho- 
ton collection rates. 

Let the probability of an event occurring in channel 
ci be pi. An event represents the detection of one or 
more photons. The number of photon counts in chan- 
nel ci is then given by the number of cycles in which the 
first event occurs in that channel and none in any ear- 
lier channel, so that ni is given by 

2-1 

722 = NPt H(1 - P j )  (1) 
j=l 

where N is the total number of cycles of operation. 
Eqn. 1 can be solved for pi: 

Let the true probability of detecting a single photon in 
channel ci be si. If si is assumed to be constant across 
channel ci, the number of events in which one or more 
photons are detected in this channel in one cycle form 
a Poisson probability distribution, so that 

S? 

2! 
pi = si exp(-si) + 2 exp(-si) + 

= 1 - exp(-si) ( 3 )  

s, = - ln( l  - p i )  (4) 

Rearranging eqn. 3 gives 

The corrected value of ni is given by Nsi. 
In general, the shapes of the reference and target sin- 

gle photon returns in the histogram are not identical. 
For single point measurements, it is usually possible 
(but tedious) to make these similar by optimising the 
optical set-up. For multipoint or scene measurement 
(when one or more objects are present), this is imprac- 
tical since the target response is dependent on several 
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factors, notably the reflectivity and angle of the target 
surface. Therefore, the total number of counts and the 
shape of the reference and target single photon returns 
(after normalisation) are not the same. 

The ADC in the SPC board quantises the output of 
the TAC, so that the probability density function fd t )  
of detected photons stored as a histogram in the SPC 
hoard memory (shown in Fig. 3) is discrete. In effect, 
the stored histogram is formed by convolving the 
underlying continuous probability density function f,(t) 
with a uniform probability density function fn(t), given 
by 

(5) 
1 Q  Q f&) = -; -- < t 5 - 
q 2 -  2 

where q is the quantisation width. This is then followed 
by conventional sampling, i.e. JXt)  = f,(t) * f,(t) * s,(t), 
where S&t) is the impulse function. The characteristic 
functions of the continuous and discrete probability 
density functions, .F,(u) and Fdu), are related by 

where sine(.) is the sinc function (sin(t)/t) and I) is the 
quantisation frequency 2 d q .  This result is used to 
reconstruct the pulse histogram at finer resolutions 
using the process of ‘upsampling’. 

An ideal TAC will have a uniform quantisation char- 
acteristic, and interpolation by ‘upsampling’ provides a 
good reconstruction of the underlying probability den- 
sity function. However, in practice, factors such as tem- 
perature drift result in nonlinearity in the TAC 
measurements. The TAC nonlinearity is described by 
two parameters [ 1 11; the differential nonlinearity 
(DNL), measured at 0.70%. and the integral nonlinear- 
ity (INL), measured at 0.18% in our case. The DNL in 
channel ci is defined as 

(n, - f i )  DNLct  = 
n (7 )  

where f i  is the mean number of counts. The INL in 
channel cj is defined as 

’ DNLcz  
INL, ,  = . 

J - k + 1  t=k 

where k s i I p and ck ... cp is the channel range in 
which the nonlinearity is measured. For a given chan- 
nel cj, the time measurement is given by 

where tit is the channel width. We used a simple correc- 
tion term to correct the errors in the time-of-flight 
measurement. The correction term q is dependent on 
the measured time interval and is defined as 

t j  1 ( j  - k + 0.5)dt (9) 

and the corrected time measurement fj is given by 

i j  = ( j  - k: + 0.5 + $ ) d t  (11) 

3 Analysis of histogram data 

The time lag (t) between tlle re€erence and target single 
photon returns can be calculated by finding the separa- 
tion between the two peaks (Fig. 3 )  in the histogram. 
This can be accomplished by either 
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(i) analysing the raw pulse data in the form of histo- 
grams. 
(ii) analysing the autocorrelation function formed 
between the target and reference histograms. 
In (i) the pulse separation defines the time lag, and 
hence the distance to the target. In (ii) the autocorrela- 
tion function is symmetric about the central axis, and 
the distance of the peak of either side lobe with respect 
to the zeroth time lag defines the time separation. 
However, in general, each side lobe is not symmetric 
since this only occurs if the shapes of the target and 
reference single photon returns are identical. 

The common approach to estimate the peak position 
in either case is centroid estimation. Let ci be the loca- 
tion of the ith channel and yli be the number of photon 
counts in ci. The centroid is then given by 

In most cases, only a limited number of channels (c,s) 
in the neighbourhood of the peak are used in calculat- 
ing the centroid. If the reference and target single pho- 
ton returns are well separated in the single photon 
returns histogram, then all the channels containing ref- 
erence and target single photon returns can be used in 
the centroid calculation. 

Photon count variations caused by noise introduce 
deviations in from the true centroid. As the channels 
(cis) in the SPC board memory are random variables 
which follow a Poisson probability density function 
with mean n, and variance n,, the centroid is also a ran- 
dom variable. The mean and variance of the centroid 
can be calculated accordingly. In practice, this pro- 
duces a large error in the measured peak position. 

We concentrate on the analysis of the autocorrelation 
function, although our approach can be applied (with 
minor changes) to the raw pulsed data. Analysis in the 
autocorrelation space has two main advantages: first, 
the computational time is reduced, since measuring the 
peak position of one peak of either side lobe gives the 
time separation of the reference and target photon 
returns; and second, the dark count effect is minimised. 
The autocorrelation function formed from the data 
shown in Fig. 3 is illustrated in Fig. 4. 

-4 i 
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time lag 
Fig. 4 Autocorrelation of ruw histogram 

Rather than relying on centroid estimation, we 
present an alternative approach based on parametric 
fitting using one of a suitable family of functions to fit 
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the autocorrelation data. The analytic form of the 
function defines the peak, and hence the position on 
the time axis. 

4 Parametric fitting of autocorrelation data 

Least squares methods produce parameters with a high 
probability of being correct if a number of critical 
assumptions are met. 
(a) All of the experimental uncertainty is associated 
with the dependent variables. 
(b) The experimental uncertainties of the data can be 
described by a Gaussian distribution. 
(c) The functional formfix,, a) is correct. 
(d) There are enough data points to provide a good 
sampling of the experimental uncertainties. 
(e) The observations are independent of each other. 
In the case of the histogram data obtained by single 
photon returns from the reference and target objects, 
the assumption that the functional form is known is 
not valid. Using an inappropriate fitting function 
which seems to describe the data may produce parame- 
ters with no physical meaning. In order to overcome 
this problem, we use a weighted least squares process 
combined with a model selection approach to analyse 
the histograms. To assign the correct weights, we first 
compute the errors in the discrete autocorrelation data 
on the basis of the assumed Poisson distributed noise in 
the channels of the histogram. 

4,  I 
a u toco rrela tion da fa 
Let fdt) be the single photon returns histogram from 
the reference and the target. The autocorrelation func- 
tion is defined by 

Computing error distribution in 

t=-w 

where zis the time lag. 
The number of counts in each channel of the histo- 

gram follows a Poisson distribution. For channels con- 
taining more than a few counts (2 30), this can be 
approximated by a Gaussian distribution with an 
expectation value equal to the number of counts and a 
standard deviation equal to the square root of the 
number of counts in each channel. 

For channel C k  

n k  = % + 6 n k  (14) 
where ank is a random variable with z k  = 0, and osnk 
= dG. 

The Fourier coefficient Nj is obtained from 

Nj =%+6n/, 

N 

Separating the real and imaginary parts of eqn. 15 
gives the following set of equations [12]: 

(15) 
1 N - - l  

= - n,l_eUkJ 

k=O 

~n/,,, = 1 N - l  t i nk  cos (”) - (17) 
k=O 
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The variances of the Fourier coefficients 
are given by 

o&,~) 

The above set of equations can be simplified by using 
the relation = & (Poisson distribution of the 
counting channels). This gives 

1 1 
&3,r = -NbJ 2 + SJ%’,’ 

In terms of the functionsflt), F(u) (the histogram and 
its Fourier transform, respectively), eqns. 22 and 23 can 
be written as 

1 1 
ngI(n) = -FI(~) + 5 F ~ ( 2 n  + 1) 2 

The autocorrelation function is given by the inverse 
Fourier transform of F(u) r (u ) ,  where -r”(u) is the 
complex conjugate of F(u). 

Let g(l) be the autocorrelation function and G(u) be 
its Fourier transform. G(u) is then is given by 

(25) 

G(u) = Fi(u) + F?(U) (26) 
The variances of the Fourier coefficients of the auto- 
correlation function are calculated by using the error 
propagation formula 

that is the error in the Fourier coefficients of the auto- 
correlation function SG is a random variable with mean 
zero and standard deviation given by o(G). The error in 
the autocorrelation function dg is also a random varia- 
ble with mean zero, and the standard deviation is 
obtained by computing the inverse Fourier transform 
of 49. 

5 

A conceptual representation of the observed histogram 
is by a probabilistic density function (PDF). As this 
underlying PDF is unknown, a nearest representation 
to the underlying ‘true PDF’ is chosen. This model is 
referred to as the operating model. Ideally, this operat- 
ing model could be obtained by modelling the single 
photon avalanche diode. However, in practice, it is dif- 
ficult to obtain sufficient information to fully charac- 
terise this, and we can only specify the family of 
models to which the operating model belongs. The size 

Selection of best fitting model 
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of the family of models is determined by the number of 
independent parameters. In principle, the accuracy of 
the estimation improves when more data are available 
relative to the parameters. 

In order to select appropriate functions, we assume a 
general family of models which is consistent with the 
data, given by 

m 

where A(.) is the parametric key function; p,(.)s are 
polynomials; 2, is the time lag of the autocorrelation 
function; and p is the normalising function of the 
parameters. 

The key function is selected from a family of PDFs. 
Currently, we are concentrating on the Lorentzian 
PDF, although we have also used a Gaussian PDF in 
our experiments. 

The Lorentzian PDF is given by 

600 

where Io is the position of the peak and y is a measure 
of the width of the PDF (2y = FWHM). 

Since the side lobe of the autocorrelation function is 
not generally symmetric, the parametric key function is 
multiplied by a polynomial function pj(.). This is 
selected from the Hermite and Laguerre polynomials 
[ 131. Together with the Lorentzian PDF, this produces 
a model family that is general enough to fit the empiri- 
cally observed form of the received data. We have also 
considered simple polynomials, but these are less effec- 
tive. The rth Hermite polynomial is defined by 

H T ( l )  = (-1)Te412DT e -P 

& ( 1 )  = 1; HI(1) = 1; H,(1) = l 2  - I 

(30) 
where D is the differentiation operator. The first few 
terms of the Hermite polynomials are given by 

H3(1) = l 3  - 31; H4(1) = l4 - 61 + 3 

- 

- 

The rth Laguerre polynomial of order a, L,"(I) is given 
by 

The first few terms of the Laguerre polynomial are 
given by 

L,"(l) = 1; L;"(Z) = a - 1 
1 1 
2! 2! 

L;( I )  = -a(a + 1) - (a + 1 ) ~  + - L 2  etc. 

(33) 
To select the correct model to fit the data, each combi- 
nation of parametric key and polynomial functions is 
tried in turn. The best key and polynomial function 
parameters are determined by a maximum likelihood 
estimate (MLE), which uses the error distribution 
derived in Section 4.1. The iterative fitting algorithm 
employed is as follows. 
Algorithm 1 Operational model fitting 
1 repeat 
D Fit the parametric key function to the side lobe of the 
autocorrelution function o j  the target and reference sin- 
gle photon returns histogram. 

IEE Proc -Vis Image Signal P r o c e ~ s ,  Vol 145, No 4, August 1998 

D Estimate the polynomial coefficients which are condi- 
tional on the estimated parametric key function parame- 
ters. 
D Estimate the parametric key function parameters 
which are conditional on the estimated polynomial coefj- 
cients. 
2 until (convergence) 

6 Experimental evaluation of processing 
methods 

For comparison, we have evaluated the performance of 
the depth measurement system using three different 
approaches to processing the histogram of reference 
and target single photon returns. 
(i) Computation of the centroid of the side lobe in the 
original autocorrelated data. 
(ii) Computation of the centroid of the side lobe of the 
reconstructed autocorrelated data following sub-chan- 
ne1 reconstruction of the histogram. 
(iii) Model fitting using the key and polynomial func- 
tions of the reconstructed autocorrelated data follow- 
ing sub-channel reconstruction of the histogram. 
We used a 14pn  diameter SPAD, with the laser oper- 
ating at 25MHz and a count rate of about 800kHz. A 
metal target was mounted on a micropositioner 1.2m 
away from the sensor. The resolution of the microposi- 
tioner was 1 0 ~ .  A set of 20 measurements was taken, 
with a collection time of 20s for each measurement. 
The target was then moved in steps of 2 0 ~  towards 
the sensor. We used a gauge unit (touch probe, Mercer 
122) to verify the actual micropositioner movement, 
and 20 measurements were made at each new target 
position. This was repeated 10 times in order to get 11 
sets of 20 measurements. We then moved the target 
back to the initial position and repeated the experiment 
for different step sizes of 30p-1, 4 0 ~  and 50p-n. The 
mean of each set was used as the true measurement of 
the sensor against the ground truth measured by the 
gauge unit. 
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Fig. 5 
0 algorithm 1 
+ algorithm 2 
X algorithm 3 
__ ground truth 
step size = 5 0 p  

Comparison of output from three algorithms 

Fig. 5 shows a comparison of the results obtained by 
each algorithm for the same set of data. In this case, a 
fixed threshold of 100 was used to eliminate the dark 
counts in the histogram before calculating the autocor- 
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relation function. In order to calculate the centroid, we 
used a 50% FWHM threshold of the autocorrelation 
peak. As stated above, the results obtained by algo- 
rithms 1 and 2 depend critically on this threshold, 
unless the pulse histogram is optimised by fine-tuning 
the optics and the laser driver. In contrast, the results 
from algorithm 3 are consistent. 

Fig. 6 shows the output of the fitting algorithm; the 
mean squared error is very low (4.88 x but the 
greatest vertical error in the correlation coefficient 
occurs on the slopes either side of the peak just above 
80Ops. As evident from the experimental data shown in 
Fig. 7 for example, the horizontal error in peak deter- 
mination (i.e. time, distance) is very small. 

and the ground truth, and is less than 1 0 ~ .  The 
repeatability refers to the closeness of of the agreement 
between successive measurements of the same measur- 
and and can be estimated from the standard deviation, 
which is 1 5 ~ .  

I ’  I 

Fig.8 Intensity image of scanned objects 
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Com arison of sensor measurement (centroid threshold 30?6) 

It is possible to obtain better results from algorithms 
1 and 2 by varying the threshold (Fig. 7). However, in 
practice, it is very difficult to set the optimum thresh- 
old. In addition, the accuracy obtained by algorithms 1 
and 2 is always lower than that obtained by algorithm 
3 (Figs. 5 and 7). 

In summary, there is good agreement between the 
processed range and the ground truth determined by 
the micropositioner. The accuracy is defined as the 
closeness of the mean measurement between the sensor 
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Fig.9 Range image of metal object 

Fig. 10 Range image of toy zebva 

Figs. 9 and 10 show range images of a metal object 
and a toy zebra obtained by the TOF sensor, respec- 
tively. Fig. 8 shows an intensity image of the scanned 
objects. The size of the depth images is 80 x 140 pixels. 
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The measurements were performed at a photon count- 
ing rate of approximately 800 kHz and a collection time 
of 0.5s per point. An XY stage was used to scan the 
object and, to minimise the possible effects of vibration 
(caused by the driver circuit of the XY stage), a longer 
delay was used between each successive measurement. 
Using one measurement only at each point, we have 
estimated that the uncertainty associated with each 
point on the metal object is between 90-15Opq which 
is higher than the uncertainty associated with repeated 
single point measurements. This was most probably 
due to the large variation in the number of collected 
photons returned from the target with non-uniform 
reflectivity. However, no exact ground truth was avail- 
able in this case. We are optimistic that further work 
on the scanning mechanism and adaptive processing of 
the received histogram data may substantially improve 
on this uncertainty. 

7 Conclusions 

We have demonstrated that time-correlated single pho- 
ton counting can provide very accurate range data 
measurement in the order of 10-2Opm in reasonable 
time, in the order of 1 s per point. Furthermore, there is 
a speedlaccuracy trade-off; much faster acquisition 
times are possible with reductions in the accuracy of 
the range data. We have also demonstrated that the 
system can be used to acquire dense, occlusion-free 
range images. 

We have also compared different methods to process 
the reference and target single photon returns histo- 
grams. Using an autocorrelation function reconstructed 
by upsampling improves the basic centroid method, but 
this is still dependent on heuristic setting of the channel 
threshold to compute the time separation between ref- 
erence and target single photon returns. In contrast, fit- 
ting of the autocorrelation data by a combination of a 
symmetric Lorentzian key function adjusted by a 
Laguerre or Hermite polynomial results in a more 
accurate estimate of the time separation, which is not 
sensitive to such thresholds. 
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