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Abstract: A new multi-spectral laser radar (ladar) system based on the time-correlated single
photon counting, time-of-flight technique has been designed to detect and characterise distributed
targets at ranges of several kilometres. The system uses six separated laser channels in the visible
and near infrared part of the electromagnetic spectrum. The authors present a method to detect the
numbers, positions, heights and shape parameters of returns from this system, used for range
profiling and target classification. The algorithm has two principal stages: non-parametric bump
hunting based on an analysis of the smoothed derivatives of the photon count histogram in scale
space, and maximum likelihood estimation using Poisson statistics. The approach is demonstrated
on simulated and real data from a multi-spectral ladar system, showing that the return parameters
can be estimated to a high degree of accuracy.

1 Introduction

Laser radar (ladar) is an established technique for 3D
surface measurement in industrial or other commercial
applications [1], for airborne scanning and mapping [2]
and for the detection, ranging and recognition of remote
targets in defence [3]. In the latter context, the ladar has
the ability to acquire both reflectance and geometric data
simultaneously from the target, thus providing potentially
a more powerful classification tool than a purely passive
source in the visible or infrared wavebands. To produce a
full three-dimensional (3D) image [4], such ladars can be
built either using a single detector with a scanning mechan-
ism in two dimensions, a linear array of detectors with a
scanning mechanism in one dimension or a focal plane
array of either integrating sensor elements combined with
a gated source (burst illumination, flash ladar) [5] or of
3D range sensing elements such as avalanche photodiodes
[6] or PIN devices [7]. If a multi-spectral capability is
included, that is, the ability to acquire images of the
target at several different wavelengths [4, 7], then it is
possible to combine the 3D geometry of the laser ranging
with the spectral signature of the response to provide very
informative data about the nature of the target.

To date, the majority of ladar systems have concentrated
on the analysis of a single assumed return from an opaque
surface normal to the beam to produce a range measure-
ment, typically using pulsed, AM or FM signals [1]. In con-
trast, we have developed a time-of-flight (TOF) 3D imaging
technique based on time-correlated single photon counting
(TCSPC) [8, 9], capable of resolving returns from several

surface reflections. TCSPC is a statistical sampling tech-
nique which relies on the accumulation of a large number
of individual measurements of photon return time in order
to significantly improve the overall system accuracy.
Typically, such systems use a picosecond duration pulsed
source (usually a pulsed semiconductor laser) and a
silicon-based single photon avalanche diode (SPAD) detec-
tor. These components can lead to a jitter of 100–500 ps in
the return signal for a single photon measurement, but by
accumulation of photon returns and post-processing of the
histogram, a time resolution of lower than 1 ps has been
demonstrated. Most of our previous work has been directed
towards high accuracy scanning of uncooperative surfaces
at short ranges, for example 20 mm depth resolution at a
distance of 2 m [8, 9], aimed primarily at applications in
industrial metrology. However, we have also looked at
the application of the technology to longer distances
(10–100 m) for scanning of architectural and archaeologi-
cal artefacts. For a description of the fundamental approach
the reader is directed to [8].

In this paper, we discuss the processing of data from a
new, static ground-based multi-spectral ladar system to
acquire 3D data from targets at several kilometres. As in
the previous work referred to in the opening paragraph,
we combine the acquisition of 3D data with a multi-spectral
capability, but there is an important difference in the TOF-
TCSPC approach. Specifically, photon returns from a
distant target can be accumulated from anywhere within
the incident laser beam, for example from several transpar-
ent surfaces on the same axis, or from several opaque or
transparent surfaces falling within the beam diameter. Our
goal in the analysis of the TOF-TCSPC data is to determine
the range and characteristic signature of remote targets,
including the effects of distributed targets. If a single
sensor (at each wavelength) is used, then we cannot recon-
struct 3D geometry unless there is a scanning mechanism,
but the geometry of the target is represented by a signa-
ture/histogram of the distribution of depths of the surfaces
in the beam. Combining the target signatures at each wave-
length is indicative of the range and spectral nature of the
target. Although the acquisition of full 3D geometry
requires a scan or a focal plane array, as noted above, the
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depth distribution of the surfaces is still very informative.
For a single spectrum, we wish to determine

† the number of surface returns present,
† the amplitude of each of these returns,
† the position of each of these returns and
† the signal parameter vectors, when allowed to vary from
a reference (instrumental) response.

2 Multi-spectral ranging system for
distributed targets

The multi-spectral ladar system extends the basic principle
of TCSPC-TOF described in [8] and elsewhere to multiple
wavelengths in the visible and near infrared part of the spec-
trum, as illustrated in Fig. 1. The system is designed to
operate at ranges of several kilometres, and has six trans-
mitting laser diodes of wavelengths 630, 686, 780, 841,
911 and 975 nm arranged in a ring around a receiving
Schmidt–Cassegrain telescope that focuses the broadband
return onto an optical fibre mounted on a translation
stage. The wavelengths are separated by an optical
routing module into the six distinct narrowband channels,
each of which is focused in turn on a channel-specific
SPAD. The time multiplexing of the channels is performed
by a multi-wavelength sequencer.

The trigger for a photon measurement comes from the
laser driver, so that the SPAD (in each channel) records
the arrival time of a detected photon. As the laser is
pulsed repetitively, multiple photon events contribute to
the formation of a histogram of photon events whose
horizontal axis is time of arrival after the transmitted laser
pulse, and vertical axis is the number of recorded events
in each histogram bin. In contrast to other types of ladar
system, the TCSPC approach is capable of greater
sensitivity and accuracy of measurement, and is much less
susceptible to range-intensity crosstalk or ‘random walks’
caused by varying reflectance and signal amplitude on the
distance measurement. If the surface reflectance is
reduced, then the number of photon counts is reduced (for
a given collection time), but the distribution and method
of analysis is unchanged. A discussion of the measurement
accuracy as a function of the number of collected photons,
whether changed by variation of collection time or reflec-
tance, can be found in Pellegrini et al. [10]. A further
common source of error in range measurement is due to
temperature variation. The effect of this factor on photon
count systems was reported by Massa et al. [9]. Range-
intensity crosstalk and temperature variation have not

been evaluated as systematically for the multi-spectral
system, but we have varied collection time and used
targets of very different reflectivity in the experiments
presented here and the results are consistent with our
previous observations.

For a single wavelength, we can analyse that distribution
to find the distance to, and nature of, the target. However,
differences between the wavelengths can also be used
for target classification. Figs. 2a, c and d illustrate on a
logarithmic scale some examples of data acquired by the
multi-spectral system. Fig. 2a is a corner cube that can
be used as an instrumental response. Figs. 2c and d
are two examples from one of several test targets we
used, a wavy metal plate shown in Fig. 8a. What are
immediately apparent from Figs. 2c and 2d is that
the shape of the histogram is quite different at the two
wavelengths, and that the measured histogram does
not come from a single normal surface. This forms an
effective basis for both range measurement and target
discrimination. Fig. 2b shows the fitting of the piecewise
exponential (PE) function to the data from the corner
cube; this defines the initial parameter set of (1) that is
used to characterise the target signatures such as those
shown in Figs. 2c and d.

3 Modelling the photon count data

Previously [11], we obtained accurate estimates of the peak
position of a single return by iterative fitting of an operating
model to either the raw histogram data or to the auto-
correlation function and minimisation of an error metric.
The exact functional form of the histogram was unknown,
so we employed a nearest representation or operating
model based on the product of a Lorentzian key function
and the summation of Hermite polynomials to describe
the underlying distribution. The best parameters for this
operating model were determined by a maximum likelihood
estimation (MLE) using the approximation that the true
Poisson distribution of photon count data could be rep-
resented by a Gaussian distribution if the count levels are
sufficiently large. This method was successful in recording
an average localisation error of 0.1 ps in measuring the time
separation of two peaks in the histogram, using a bin width
of 2.44 ps. However, it was necessary to limit the time index
of the photon counts (i.e. the width of the peak) as the
higher order Hermite polynomials (like any polynomial)
have oscillations of large magnitude at high index values
[12]. If a histogram contains multiple responses of quite
different magnitudes, the implementation of a step (or
other) function truncation of a signal of high magnitude
can obscure a genuine but much smaller response.
Further, if the returns are low in amplitude, which may be
due to increased range, shorter acquisition times or lower
reflectance from the target, the Gaussian approximation
may no longer be valid. Therefore, we employ the alterna-
tive of a set of four PE functions to model the histogram
response of a single peak in this work

f ði; pÞ ¼ b

e�ði1�i0Þ
2=2s2

eði�i1Þ=t1 i , i1

e�ði�i0Þ
2=2s2

i1 � i , i2

e�ði2�i0Þ
2=2s2

e�ði�i2Þ=t2 i2 � i , i3

e�ði2�i0Þ
2=2s2

e�ði3�i2Þ=t2 e�ði�i3Þ=t3 i � i3

8>>><
>>>:

ð1Þ

The parameter set for a single return, p ¼ fb, s, i0, i1, i2, i3,
t1, t2, t3g. If desired, it is also possible to enforce first order

Fig. 1 Schematic diagram of the multi-spectral, TCSPC-TOF
system for target ranging and classification
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continuity (C1) constraints on the PE model so that the
gradients at the transitions are also equal, that is

s2 þ t1ði1 � i0Þ ¼ 0 at i1

s2 � t2ði2 � i0Þ ¼ 0 at i2 ð2Þ

t2 � t3 ¼ 0 at i3

As an example, Fig. 2b shows the fit of the PE function
to the return from the corner cube, which can be con-
sidered as an approximation to an instrumental response.
Although the PE model is an operating model rather than a
true model of the response of a SPAD, Stellari et al. [13]
have observed in their studies of the temporal response of
similar devices that the ‘SPAD response has a regular shape,
with a Gaussian peak and an exponential tail’. For both our
data and that of Stellari et al., there is an apparent breakpoint
in both the rising and falling part of the intrinsic time response
that makes the four piecewise function a better model fit to
the data.

In general, we wish to detect small, probably overlapping
signals, observed against a finite background level that has a
constant expected value across all channels in a single his-
togram, although that background level can vary as a func-
tion of integration time, temperature and wavelength. In that
case, the function that defines the observed photon count

histogram, F(i, P), is a statistical mixture constructed from
a random sample of a distribution with density

Fði;PÞ ¼
Xn

j¼1

fjði; pjÞ þ B ð3Þ

where n denotes the number of terms in the summation,
which depends on the number of surface returns. fj(i, pj)
denotes the functional form from the jth scatterer, where
f (.) is defined by (1). The parameter B represents the back-
ground photon count level. Assuming that the time
resolution is sufficiently fine, the number of photons, ci,
in bin i, can be considered as a random sample from a
Poisson distribution, with mean and variance F(i, P) that
depends on the parameter set, P

PðciÞ ¼ e�Fði;PÞ Fði;PÞci

ci!
ð4Þ

We have considered two forms of the parameter set, P,
although other options are possible dependent on appli-
cation. First, each return can have a distinct amplitude,
shape and position. Hence, P ¼ fb1, i01, . . . , t31, . . . , bn,
i0n, . . . , t3n, Bg and the parameter set has cardinality
(9nþ 1). Second, the shape parameters are the same, and
known from a prototypical or instrumental response.

a b

c d

Fig. 2 Examples of data acquired by the multi-spectral system

a Data from a corner cube at 330 m, l ¼ 630 nm
b Fitting the PE function to the corner cube data
c Target data, l ¼ 630 nm
d Target data, l ¼ 780 nm
One bin (channel) corresponds to 6.1 ps
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Hence, P ¼ fb1, is1, b2, is2, . . . , bn, isn, Bg. This has
cardinality (2nþ 1).

4 Method: finding and characterising multiple
peaks in the photon count data

We summarise a top-level description as Algorithm 1.

Algorithm 1:
Stage 1: Find putative signal positions in target data

† Set initial width for Gaussian smoothing kernel
† Repeat

† Apply Gaussian kernels (Gaussian, first and second
derivatives) to raw time series data
† Compute diagnostic parameters on filtered data, for
example, curvature, excess mass
† Record positions and amplitudes of possible peaks on
the basis of diagnostic measures
† Reduce width of Gaussian kernel

† Until (maximum number of targets exceeded or
minimum kernel width reached)
† Sort the k-peaks into descending order of peak height

Stage 2: Perform maximum likelihood estimation using
variable numbers of peaks from Stage 1

† Assume initially a single peak is present
† Repeat

† Perform maximum likelihood estimation using initial
parameters of current list of putative peaks
† Record value of resultant log-likelihood function
† Add the next peak from the sorted list (� with the
option of adding further peaks at random)

† Until [the number of peaks from Stage 1 has been
reached (� or exceeded)]
† Record log-likelihood function, peak parameters and
error measures for each number of peaks
† Determine the probable number, amplitudes and
positions of peaks on this basis

To establish an initial, variable or fixed set of shape
parameters (1), we use a corner cube or a ‘good’ external
target as a reference. The photon spectrum may be shaped
by multiple returns from semi-transparent surfaces, or
from different surface depths within the illuminated area
of the incident beam. If a target is distributed in depth
within the field of view of the sensor, if the transmitted
pulse profile or impulse response of the detector change
or if the atmospheric conditions change, then the pulse
profile is changed. Stage 1 is non-parametric, but in Stage
2 we estimate either (2nþ 1) or (9nþ 1) parameters, as
defined in Section 3.

4.1 Non-parametric peak finding in scale-space
filtered data

The number of possible mixtures is combinatorially explo-
sive, so we ‘bootstrap’ the analysis of the histogram by a
bump hunting procedure [14] that provides an initial
estimate of the number, amplitude and positions of the
suspected returns. Depending on the amplitude and separa-
tion of discrete returns, a histogram of many returns may
be multi-modal or multi-tangential (implied by multi-
modality). In noiseless data, it is simple to test for this
by analysis of the differential structure of the data [15]
but in noisy data such differential properties are amplified.
We obtain a progressive series of kernel density estimates
by linear filtering with Gaussian filters of progressively
decreasing standard deviation, h. To interpret such data,

Silverman [16] tested the null hypothesis that a given
kernel density estimate has k-modes against the alternative
that it has less than k-modes. Chaudhuri and Marron [17]
drew the analogy between kernel density estimates in stat-
istics and scale-space filtering in computer vision to
produce SiZer (Significant Zero crossings of derivatives)
maps. Focusing on zero crossings of the derivative of the
smoothed function, the SiZer map is a visual tool that
shows the number of modes at each value of h in scale
space. Fisher and Marron [18] later argued that critical
bandwidth tests do not take into account the strength of
the mode and included additional thresholds on both the
height and excess mass of a mode.

In our approach, the original histogram is also smoothed
by Gaussian and Gaussian derivative filters to detect
structure, that is, progressively defined by the functions,
G(i, h) ¼ [1/

p
(2p)h]e2i2/2h2

, G0(i, h) ¼ [i/
p

(2p)h3]e2i2/2h2

,
G00(i, h) ¼ [(i2/h2 2 1)/

p
(2p)h3]e2i2/2h2

. However, we
focus on the curvature, that is, peaks in the second deriva-
tive, rather than zero crossings in the first derivative [17].
This arises primarily from the desire to detect multiple
returns when indicated only by multi-tangentiality, for
example in Fig. 4, where zero crossings do not exist in
the first derivative Gaussian filtered data. To illustrate our
approach, consider the analysis of the detection of a
single mode in a photon count histogram by analysis of
the smoothed second derivative. Using the Heaviside func-
tion, U(.), we can compute the convolved output of the PE
function with the smoothed second derivative filter as

sði; h;PÞ ¼
Xiþw

l¼i�W

faði;PÞ � faði;PÞU ði� i1Þ

þfbði;PÞU ði� i1Þ � fbði;PÞU ði� i2Þ

þfcði;PÞU ði� i2Þ � fcði;PÞU ði� i3Þ

þfdði;PÞU ði� i3Þ þ B

2
6664

3
7775

� G00ði� l; hÞ ð5Þ

where fa2d(i, P) are the four piecewise functions of (1)
in temporal order. We use the function G 00(i 2 l, h) for
l . iþ h and l , i 2 h and the inverse 2G00(i 2 l, H ) ¼
1/

p
(2p)h3(1 2 (i 2 l)2/h2)e2(i 2 l)2/2h2

for i 2 h , l , iþ h.
Splitting the convolution in this way, each discrete sum
can be considered as a sum of Poisson distributed variables.
Hence, the results are also Poisson distributed with means
m1 and m2. However, each entry in the convolved s(i, h, P)
is a discrete spectrum in which each entry is the difference
of these two Poisson distributed variables. The resulting
probability distribution at each bin, i, is

PðciÞ ¼ e�ðm1þm2Þ
m1

m2

� �ci=2

Ici
2
ffiffiffiffiffiffiffiffiffiffiffi
m1m2

p� �
ð6Þ

where m1 and m2 are the respective means and I(.) is a
modified Bessel function of the first kind [19]. The
problem is to set a threshold to detect the presence of
single or multiple pulses against a constant background,
or against the background formed by other overlapping
pulses. For clarity, consider the case where there is a
single return and the width of the second differential filter
function is contained wholly within the peak region of
f (i, P). This is useful because that is where we would
expect the peak in the filtered signal. The approximation
of the adjoining filter functions by the central Gaussian
should not have a significant effect even if the window is
slightly wider than the limits of the response because the
count rates and filter coefficients are much lower. Further,
the difference between the adjoining exponentials fa(i, P),
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fc(i, P) and the central Gaussian fb(i, P) only deviates
far from the breakpoints i1 and i2. Then, from (1) and (5)
we have

sði; h;PÞ ¼
XiþW

l¼i�W

f ðl;PÞG00ði� l; hÞ

¼
XiþW

l¼i�W

be�ðl�l0Þ
2=2s2

þ B
� � 1ffiffiffiffiffiffi

2p
p

h3

�
ði� lÞ2

h2
� 1

� �
e�ði�lÞ2=2h2

ð7Þ

in the presence of a return, and

sði; h;PÞ ¼
XiþW

l¼i�W

B
1ffiffiffiffiffiffi

2p
p

h3

ði� lÞ2

h2
� 1

� �
e�ði�lÞ2=2h2

ð8Þ

if no return is present. Hence, we can compute the mean
levels, m1 and m2 of (6), for the two Poisson distributed
components in bin i of the distribution of filtered photon
count data when the maximum of the Gaussian filter
coincides with the maximum of the PE of a return at pos-
ition i0. If a return is present, then the expected levels of
the two means are found by splitting the convolution of
(7) into the central and outer components of the discrete
summation, as shown in (9)

m1 ¼
1ffiffiffiffiffiffi

2p
p

h3

Xi0þh

l¼i0�h

1�
ði0 � lÞ2

h2

� �

� be�ððl�i0Þ
2=2s2þði0�lÞ2=2h2Þ þ Be�ði0�lÞ2=2h2

� �

m2 ¼
1ffiffiffiffiffiffi

2p
p

h3

Xi0�h

l¼�W

ði0 � lÞ2

h2
� 1

� �

� be�ððl�i0Þ
2=2s2þði0�lÞ2=2h2Þ þ Be�ði0�lÞ2=2h2

� �

þ
1ffiffiffiffiffiffi

2p
p

h3

XW
l¼i0þh

ði0 � lÞ2

h2
� 1

� �

� be�ððl�i0Þ
2=2s2þði0�lÞ2=2h2Þ þ Be�ði0�lÞ2=2h2

� �
ð9Þ

In the absence of a return, (8) is split similarly into the
two components to give

m1 ¼
1ffiffiffiffiffiffi

2p
p

h3

Xi0þh

l¼i0�h

B 1�
ði0 � lÞ2

h2

� �
e�ði0�lÞ2=2h2

m2 ¼
1ffiffiffiffiffiffi

2p
p

h3

Xi0�h

l¼�W

B
ði0 � lÞ2

h2
� 1

� �
e�ði0�lÞ2=2h2

þ
1ffiffiffiffiffiffi

2p
p

h3

XW
l¼i0þh

B
ði0 � lÞ2

h2
� 1

� �
e�ði0�lÞ2=2h2

ð10Þ

A minimum probability of error receiver is applied to the
filtered data to detect the presence or absence of a return.
Define the probability distribution of a signal in the pre-
sence and absence of a signal as f (cijH1) and f (cijH0),
respectively, where H1 and H0 denote the hypotheses that
a return is present and absent. Further, we define the
a priori probabilities of a return or no return as P1 and
P0, respectively, and the cost functions Cij as the cost of a
decision i given that the true hypothesis is j, then the

Bayes decision rule is

LðciÞ ¼
f ðcijH1Þ

f ðcijH0Þ
¼ e�ðm11þm21�m10�m20Þ

m11m20

m21m10

� �ci=2

�
Ici

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m11m21

p� �
Ici

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m10m20

p� �
 !

0
H1

H0

P0ðC10 � C00Þ

P1ðC01 � C11Þ
¼ h ð11Þ

using the notation mij to denote mean i under hypothesis j.
h is the threshold on the likelihood statistic, L(ci). For
the minimum probability of error, the cost of an error (C01,
C10) is normally 1, and of a correct decision (C11, C00)
is 0, so that the right-hand side of (11) reduces to P0/P1.
The error function is P1 ¼ PMP1þ PFP0 where PM and PF

are the probabilities of a missed target and false alarm,
respectively. Taking natural logs, (11) can be re-arranged
to give a quadratic in ci. Finding the root of this quadratic
allows us to set the threshold for the detection of the
presence or absence of a pulse, where h is the ratio of
a priori probabilities

ci

2
ln

m11m20

m21m10

� �
þ ln

Ici
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m11m21

p
Þ

Ici
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m10m20

p
Þ

 !

þ ðm10 þ m20 � m11 � m21Þ � lnh0
H1

H0

0 ð12Þ

A similar analysis for the Gaussian noise case gives the
more familiar expression

c2
i

s2
1 � s2

2

2s2
1s

2
2

� �
þ ci

m1s
2
2 � m2s

2
1

� �
s2

1s
2
2

þ
m2

2s
2
2 � m2

1s
2
1

� �
2s2

1s
2
2

þ ln
s2

s1

� �
� lnh0

H1

H0

0 ð13Þ

where m1, m2, s1 and s2 are the respective means and
standard deviations.

Fig. 3a shows an example of a simulation of a return,
based on a fit to real data parameters, in which b ¼ B ¼ 2
counts, and i0 ¼ 1000 bins. Looking at Fig. 3b, there is no
significant difference between the expected distribution of
the second Gaussian derivative filtered data using the true
Poisson and a Gaussian noise assumption. In interpreting
this data, it should be noted that the Gaussian filter
coefficients have been normalised in (9) and (10).
Therefore the Poisson distribution, although discrete, is
not represented at integer values; the un-normalised,
integrated count difference and sum peaks are at 0 and 45
counts, respectively, explaining why there is little
difference between the Poisson and Gaussian distributions
in this case. The decision functions in Fig. 3c, that is, (11)
and (13), do diverge but the root in each case is at a
normalised count level of 0.337. Fig. 3d shows that the
effect of setting such a threshold in the particular example
of Fig. 3a would give the true positive, but also a false
positive between 600 and 700 bins. The possibility of
false detection is small but non-zero, as illustrated in the
curve for b ¼ 2 in Fig. 3e. The final three figures show
the fitted, true peak from the MLE (discussed in the next
section, the false peak is rejected as unlikely at this
stage), and the effect of variation of the smoothing filter
width on the probability of detection and of a false alarm
assuming the threshold is set correctly. As expected, the
performance improves rapidly as the width of the smooth-
ing filter is matched to the anticipated shape of the
histogram response, but there is no clear minimum as
the filter width increases further.
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Fig. 4a shows a simulation of four returns present against
a constant background level of five counts; the signal ampli-
tudes are 50, 100, 45 and 50 counts at peak positions of
1884, 1935, 1990 and 2200 bins, respectively. This shows
that multiple returns may not result in multiple modes. As

this is a simulation, the ground truth is known, so we can
determine whether the bump hunting process on the
smoothed derivatives can detect these peaks. Examining
the smoothed first derivative (h ¼ 12 bins) in Fig. 4b,
there is a clear zero crossing for each of the dominant

a b

c d

e f

g h

Fig. 3 Example of a simulated signal

a Example of a simulated signal of height two counts against a background level of two counts. The shape of the return is based on real data. The
standard deviation of the peak exponential is 25.7 bins
b Comparing the theoretical distributions of the curvature data for normal (solid line) and Poisson (crosses) distributions for a return of height two
against a background of height two counts
c Plotting (12) and (13) to decide the decision threshold, 0.337 in this case (h ¼ 1)
d Setting the decision threshold for curvature data; note the false alarm between 600 and 700 bins in this example
e Theoretical receiver operating characteristic (ROC) curves for expected signal return heights of 2, 1 and 0.5 counts
f The final fit from the ML estimation
g Variation of probability of detection as a function of smoothing filter width
h Variation of probability of a false alarm as a function of smoothing filter width
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peaks at 1935 and 2200 bins, but not at 1884 or 1990 bins.
The second derivative data shows corresponding negative
peaks at 1935 and 2200 bins and is equally effective, but
the key advantage is in highlighting the co-tangential
points at 1884 and 1990 bins. Where the first derivative is
positive, the existence of a further negative peak in the cur-
vature shows a possible additional return (1884 bins).
Conversely, where the first derivative is negative, the exist-
ence of a further positive peak in the curvature shows a
possible additional return (1990 bins). The excess mass esti-
mate can also be used as a discriminant, defined as ‘the
amount of mass that has to be shifted to convert a
bimodal distribution into a unimodal distribution’ [18]
and computed by measuring the number of counts in a
mode in excess of both nearest local minima on either
side of the peak. These are displayed in the upper panel
of Fig. 4c, as a fraction of the total number of counts in
the histogram. The co-tangents give an excess mass esti-
mate of zero, and would not be detected by this method.
Applied to the differential data of Fig. 4b, using positive
or negative peaks to compute the excess mass as appropri-
ate, the two largest masses are due to the two co-tangential
returns.

4.2 MLE of the parameters of the target

The addition of extra components will result generally in a
closer fit, so that the most sensible approach is to assess the
smallest number of components in the assumed mixture
compatible with the data [20]. The bump hunting process
gives only an initial estimate of the number and position

of returns. To refine that estimate, we define the MLE to
find the set of parameters P, so that the function

LðcjPÞ ¼
YN
i¼1

Fði;PÞci e�Fði;PÞ

ci!
ð14Þ

is maximised. As negative counts are not possible, and the
product term is typically very small for any significant
number of bins, it is more common to use the logarithm
of this expression as minimising 22 ln L(cjP) leads to the
same parameters as maximising L(cjP). The final term,
ln(ci!), is constant and can be omitted

�2 ln LðcjPÞ ¼ 2
XN

i¼1

½Fði;PÞ � ci ln Fði;PÞ� ð15Þ

This expression has been used on a number of occasions to
interpret photon count data [21, 22]. For example, Hannam
and Thompson [21] compared MLE using Poisson statistics
with least squares analysis and Gaussian statistics, in
the latter case allowing for the dependence of the count
variance on the mean, showing that the correct use of the
Poisson statistics produced an improved estimate. If there
are few fitting parameters, then it may be possible to find
the MLE by setting expressions for each parameter deriva-
tive to zero [23] and finding the roots to these equations.
However, in this work we have in general a function of
(2nþ 1) or (9nþ 1) parameters and have applied con-
strained non-linear optimisation using sequential quadratic
programming to find the MLE estimate. To justify this
decision, the objective function must have a well-defined

a b

c d

Fig. 4 Simulated example of four closely spaced returns in a photon count histogram

a Original histogram
b Smoothed histogram, first and second derivatives
c Excess mass in smoothed and smoothed derivative data
d Final fit of four returns to simulated four peak data
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minimum in the region of the initial estimates of the pos-
itions and heights of the returns derived in Stage 1. The
initial estimate of the background level, B, comes from a
region of the spectrum where the mean count level is con-
stant. The initial estimates of the shape parameters (were
allowed to vary), come from the fit to the reference of
other instrumental signals. Then, the constraints employed
in the optimisation process are:

† Shape parameter vector: all parameters are positive,
since negative values are not physically realisable.
† Breakpoint ordering: i1 , i0 , i2 , i3 as that corre-
sponds to the piecewise definition of (1).
† Width constraint: a multiplicative constraint is placed on
variation of the function width.
† Amplitude constraint: a multiplicative constraint is
placed on variation of the function height.
† Gradient constraints: C1 continuity may be enforced as
defined by (2).

In general, the addition of more returns (and parameters)
will result in a better fit to the data. We do not define an
absolute threshold on the log-likelihood function, rather
the log-likelihood function should decrease rapidly then
remain approximately constant when the optimum
interpretation of the number of returns is reached, and we
use this likelihood here to assess the probable number of
signal returns. The problem with the likelihood is that
it does not correct for the model complexity, unlike the
Akaike (AIC ¼ 22 log[L(cjP̂)þ 2k]), Bayesian (BIC ¼
22 log[L(cjP̂)þ log(N )k]) information and minimum
distance length (MDL ¼ 22 log[L(cjP̂)þ (1/2) log(N )k])
criteria, each of which adds a penalty to the MLE based
on the number of free parameters, k [24].

Fig. 4d and Table 1 show the final result of the ML
estimate of the number and position of returns in our simu-
lated example. A fifth peak was found in Stage 1 but this
was rejected by the subsequent estimation. It should be
noted that the progressive decrease of the log-likelihood
function is dependent on the order of fit. In this case,
there is a large decrease on addition of the fourth peak
because this is the separated mode at 2200 bins. The broad-
ening of the main peak (s ¼ 47.87 against 21.37 in the
reference) is another major factor, showing the ill-posed
nature of the problem as discussed earlier. Allowing the
peak to broaden affects the estimated amplitudes and

positions of the multiple peaks. We explore these concerns
further in the next section.

5 Experimental evaluation

In this section, we present results on both simulated and real
data. To evaluate the bump hunting process we have
performed extensive simulations of peak detection for a
range of signal-to-background ratios (SBR), comparing
the probabilities of true and false peak detection with the
theory of Section 4, and also comparing the results
against a standard non-negative least squares (NNLSQ)
algorithm that assumes Gaussian statistics. We also
present results for MLE to compare the results of parameter
estimation with known ground truth when multiple returns
are simulated from real spectral signatures. For real data,
we have evaluated the ability of the system to measure
target separation at long range, using corner cubes
mounted on a ruled gauge to give an accurate comparison.
Further, we characterise the real spectral signatures in
different channels from multiple targets of varying surface
reflectivity to show how the process can determine both
range and spectral profiles.

5.1 Simulated data: evaluation of the bump
hunting process to detect single and
double returns

We have assessed the sensitivity of the bump hunting
process to the curvature statistic used to detect single
peaks, and compared it to detection by thresholding the
response from NNLSQ [25], that is, minimising jA(P) . s 2
f (i, P)j2, where the impulse response, A(P), is known and s
is a source signal consisting of a perfect impulse scatterer. A
real data sample was used to model the shape of the simu-
lated response, as before, and this was then placed at an
arbitrary location, bin number 1000. To assess the detection
of false peaks the same process is applied, but the simulated
data has no peak, that is, it is just a constant background
signal with Poisson variations. The experiment was
performed for a single peak at three values of the peak to
background level, as shown in Fig. 5.

At higher signal-to-background levels, the probability of
false classification decreases markedly, so these curves are
not shown. The data points in Fig. 5 are the results of 50
trials in each case with the excess mass threshold set to

Table 1: Illustrative results from simulations of Fig. 4

Parameters Reference First peak Second peak Third peak Fourth peak

b (counts) 540.03 95.61 (100) 69.65 (45) 38.91 (50) 48.35 (50)

s (bins) 21.37 47.87 28.82 26.90 24.45

t0 (bins) 2298.21 1937.79 (1935) 1984.86 (1990) 1879.32 (1884) 2201.19 (2200)

t1 (bins) 2275.26 1884.54 1971.99 1862.88 2175.47

t2 (bins) 2310.67 1944.02 2011.69 1889.97 2218.02

t3 (bins) 2404.95 2067.23 2043.09 2011.59 2333.23

t1 (bins) 12.20 24.24 24.40 10.21 8.34

t2 (bins) 36.77 18.38 39.01 18.38 29.17

t3 (bins) 604.96 590.38 302.47 603.53 599.10

22 ln L(cjP ) No peaks First peak Second peak Third peak Fourth peak

2106006 2142888 2143022 2143218 2146338

Real data from the multi-spectral sensor was used as a model for the histogram distribution. The upper part of the table shows the final
values of the three parameters, allowing all parameters to vary. The lower part shows –2 ln L(cjP) to the nearest integer. The true
simulated peak heights and positions are shown in brackets. The computed background level was 5.92 (5) counts
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zero, that is, the curvature alone is used as a threshold. In
each figure, the threshold is increased progressively from
left to right, so that the number of false positives should
decrease, but true positives should also decrease. This
does not happen monotonically due to the random nature
of the trials. In general, the curvature statistic gives a
better measure of the presence or absence of a mode, as is
most evident from the SBR ¼ 2.5 : 5 data. For example,
the left figure shows that at a curvature threshold of 2, 49
of the 50 true peaks are found and 47 fitted, but there are
only four false positives of which three are fitted. If we
look at the corresponding NNLSQ data, then the best
result is probably at a threshold of nine, that is, the only
one where the true peaks total of seven exceeds the false
peaks total of four. Another comparison can be made
between the results of the theoretical analysis in Fig. 3
that show an optimum probability of true detection of
about 0.8 against a probability of false detection of 0.14
at an optimum threshold. In fact, the results of the simu-
lation presented here are better than those predicted in
Fig. 3, although neither the thresholds nor the detection of
true and false peaks are directly comparable. In particular,
the analysis of Fig. 3 includes only the central portion of

the peak, so this results in a difference between the ROC
values.

5.2 MLE and the variation of the objective
function

The next experiments were designed to compare the use of
the full Poisson likelihood model against the least squares
approximation, but constraining the predicted number of
counts to be non-negative, as this results in major errors
[21]. We ran simulations at various values of peak height,
position and background level to measure the variation of
the extracted parameters. As expected, there was no
appreciable difference in the estimated parameters when
the signal and background levels were high, but we antici-
pated that when the signal and background levels were
low, the true Poissonian model would give statistically
better estimates of the position, signal and background
levels. Fig. 6 is typical and shows some examples for the
estimation of signal and background heights on sets of
500 simulations of a return of mean amplitude 1.000
counts. Figs. 6a and b show histograms of the results
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Fig. 5 Comparing the use of the scale space curvature threshold (on the left) to the NNLSQ approach (on the right)

From top to bottom, the peak heights are 2.5, 5 and 10 counts against a background of five counts. On the left, the four columns show true peaks
found, true peaks fitted, false peaks found and false peaks fitted, respectively
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when no background is present; as expected, the use of the
Poisson-MLE gives an excellent estimate of 1.008 counts,
whereas the least squares estimate is 2.373 counts. Fig. 6c
shows a scatter-plot of the estimates of the background
level when a constant photon count of 1.000 counts is
added to the signal. Again, the Poisson-MLE estimate,
1.022 counts, is close to the true value, but the least
squares process gives an over-estimate of 1.416 counts,
when the signal amplitude is correctly constrained. This
latter result is very close to the asymptotic mean estimate
of m

p
[1þ (1/m)] ¼

p
2 derived and tested in [22, 23]. In

this, as in other examples, there is a high correlation
(coefficient ¼ 0.91) between the two estimates, as the
random simulation is a dominant factor.

In the next experiment, we wanted to examine by simu-
lation, the resolution of the peak estimation process for
larger returns, that is, to determine the minimum separation
of returns that could be both found and fitted by the system.
Therefore in Fig. 7a we show the result of the measured sep-
aration of two returns of known height, 2000 counts, with a
background level of five counts against the true values
known from the simulation parameters. As can be seen,
the measured and actual separations correspond well
above 16 bins, but below this point even the bitangents
become difficult to detect and the initial estimate of the
peak separation is too unreliable to successfully complete
the MLE process. In Fig. 7b, the peak separation is kept
constant at 128 bins, but the ratio of peak heights is
varied from 1 : 1, that is, each peak of height 2000 counts,
to 16 : 1, that is, the minor peak has height 125 counts.

The figure shows the measured against the true peak separ-
ation and gives a maximum error of about 8%.

5.3 Processing real data

We have run several trials on the data acquired using the
multi-spectral system. Fig. 8 shows an example of some
test objects we used to collect ladar data in one trial, that
we designate as ‘horn’, ‘wavy plate’, ‘truck’ and ‘sphinx’,
from left to right in the picture. Although toys, these
objects were chosen because of their shape and different
responses at different wavelengths. As the range was rela-
tively short, the angle subtended by these test objects was
roughly equivalent to vehicles at longer ranges, although
the atmospheric path is of course less of a problem.
However, we also used corner cubes to perform systematic
distance resolution trials and to provide a clean instrumental
response, as shown for example in Fig. 2a.

We illustrate in Fig. 9, the response of the system to the
wavy plate, which has lateral dimensions of approximately
15 cm by 40 cm, in the spectral channels at 630 and 780 nm.
The subsidiary peak shown between 800 and 1000 bins in
Fig. 9a is from the support, not the plate; the plate data is
between 1200 and 1900 bins approximately. In this exper-
iment, performed in the evening, in conditions similar to
those illustrated in Fig. 8, we pulsed the laser at 20 MHz
for a relatively long collection time of 30 s when the plate
was situated at a distance of 330 m from the ladar system.
At that distance, the beam width was approximately
33 cm as the divergence is of the order of 1 mrad. As an

a b c

Fig. 6 Estimated height from 500 trials

a Poisson statistics
b Gaussian statistics
c Comparison of the two estimates
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a Variation of measured against true peak separation for two peaks of height 2000 counts
b Measured peak separation for two peaks as a function of peak height ratio, two peaks separated by 128 bins
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instrumental response, we used data from a corner cube in
the same spectral channels. In the data shown, we fixed
the parameter vector, p ¼ fb,s, i0, i1, i2, i3, t1, t2, t3g, of
(1) from the fitted response to the corner cube data, that
is, we sought to find the amplitudes and positions of the
multiple returns, and the background level in each
channel. The first observation is that there is considerable
difference between Figs. 9a and 9b, showing that it is poss-
ible to determine information about the spectral response of
the surface by using more than one channel. The second
observation is that each channel has multiple peaks. In the
630 nm channel, the respective [position (bins), amplitude
(counts)] values are f1900.55, 50.72g, f1389.35, 51.85g,
f1619.37, 25.15g and f871.92, 22.43g. The background
level is 16.22. In the 780 nm channel, the corresponding
values are f1378.23, 25.55g, f1576.30, 10.51g f1890.57,
8.12g. The background level is 11.27. In this experiment,
1 bin corresponded to 6.1 ps. Fig. 9 shows both the original
photon count data and the smooth parametric function of
(3). The lowest data in each graph is the error between
the smooth parametric curve and the original noisy data.

The next example, in Fig. 10, is somewhat different. In this
case, we used the horn, but the beam was reflected back
towards the optical telescope from the interior surface dis-
tributed in depth with respect to the viewer. We are not
able to detect multiple modes in either the original or
Gaussian filtered data because the effect of the distributed
surface is to broaden the response, as can be seen clearly
when we compare the upper curve of Fig. 10a, from the
horn, to the reference corner cube data, the lower curve. In
this case, we cannot obtain a good fit of the un-modified

parametric function to the horn data. However, we can
allow the parameter vector to vary and obtain an optimum
response with respect to all the parameters of (1), not just
the amplitude and position. For comparison, for the corner
cube, p is fb ¼ 2363.54, s ¼ 50.88, i0 ¼ 2016.53, i1 ¼
1952.92, i2 ¼ 2062.86, i3 ¼ 2256.90, t1 ¼ 22.07, t2 ¼ 53.98,
t3 ¼ 1079.68g but for the horn, p is fb ¼ 1.587.09,
s ¼ 74.39, i0 ¼ 2023.33, i1 ¼ 1897.98, i2 ¼ 2081.32,
i3 ¼ 2234.44, t1 ¼ 44.15, t2 ¼ 95.45, t3 ¼ 1076.18g. The
clearest indication of the broadening of the peak is
probably a comparison of the s values, showing the wider
standard deviation of the central Gaussian response for
the horn.

We have also tested the range resolution of the system using
a pair of reflecting corner cubes at mean distances of 330 m
and 2 km at collection times of 0.1, 1 and 10 s to show the
measured against the true separation of the two peaks for
real data. We varied the separation of the corner cubes by
small increments in distance that could be measured accu-
rately by a ruled gauge to an accuracy of 1 mm. In general,
provided the two peaks are well separated and give two
modes in the histogram then the peaks are detected automati-
cally and the separation of the fitted peaks gives a measure in
bins that can be compared to the true separation. For example,
Fig. 11a shows a result for a separation of 9.37 cm at a dis-
tance of 330 m. The histogram gives two distinct modes,
although there is overlap between the responses. Fig. 11b
shows a graph of the distance measured by the 630 nm
channel of the multi-spectral system against ‘ground truth’
measured by a ruled gauge to an accuracy of 1 mm, as the
separation was varied from 2 cm to 24 cm. A regression fit

Fig. 8 Examples of test objects used to assess the performance of the multi-spectral ladar system

a b

Fig. 9 Response of the ladar system to the wavy plate

a l ¼ 630 nm
b l ¼ 780 nm
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to the line is y ¼ 9.09þ 0.99x (cm), with a mean absolute
error of 0.6 mm between the laser and gauge measured data,
that is, within the tolerance of the ruled measurement.

6 Conclusions and further work

We have developed a multi-spectral ladar system using
TCSPC. Here, we have presented the results of a study of
the analysis of the photon count data to find the number,
positions, amplitudes and shape parameters of the multiple
returns in independent channels. The approach we have devel-
oped has two stages, first non-parametric bump hunting to find
initial estimates of the positions and amplitudes of returns,
and second Poisson-MLE of the peak parameters.

We have analysed the behaviour of the algorithm in
response to both simulated data, for which the ground
truth is known and real data acquired by the multi-spectral
system. For the simulated data, we have shown that
the bump hunting procedure can locate both modes and
co-tangents in the histogram distribution, using diagnostics
based primarily on curvature, but we have also considered
excess mass. Using curvature as an example, we have com-
puted a decision function based on the difference of Poisson
variates, but shown that this differs little from the Gaussian
approximation because of the high integrated count rates
caused by progressive smoothing. However, we note that
the optimum width of the smoothing process is determined
by the width of the operating model of the system response.

If unsmoothed data were used, which could be the case for
returns of less width on the time axis, the Poisson model
should be used, but the error rate would be much higher as
the random photon fluctuations would have a greater effect.

The MLE process provides refined estimates that are
accurate in determining the positions and amplitudes of
the returns, even when the signal-to-background levels are
comparable and the returns are closely separated in time.
For the simulated data, the use of the correct Poisson-
MLE model gives improved estimates of the several
signal and background parameters when the photon count
rates are low, in agreement with previous work. In
general, the mean results from several trials were very
close to the simulated values, confirming the accuracy of
the approach. For the real targets, we cannot comment on
accuracy in the absence of ground truth, and have observed
that the problem is ill-posed, as different experimental con-
ditions can result in similar spectra, for example, if the para-
metric response of the detector changes or the surface is
distributed in range, especially where the beam divergence
results in a large target footprint. However, our experiments
to measure the depth separation of corner cubes for which
ground truth is known do show good agreement between
the measurements and ground truth.

There are still some additional aspects of the work that
merit further investigation. Empirically at least, our experi-
ence is that if the reference signal is recent (e.g. acquired
concurrently with the target) then one need not vary all
the shape parameters of the return if the target is a single,

a b

Fig. 11 Testing the range resolution using incremental variation of separation of two corner cubes

a Stand-off distance 330 m, separation 9.3 cm, collection time ¼ 10 s
b Laser measured against gauge-measured separation, for distances from the offset in the range 0–24 cm

a b

Fig. 10 Response of the ladar system to the horn at 630 nm

a Comparison of the horn response (upper curve) to the corner cube (lower curve)
b Final result for the horn data
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normal surface. However, one can compensate for a dis-
tributed (in distance) surface by varying those shape
parameters. Another consideration is whether detailed
modelling of the tails is necessary and whether that
affects localisation of the peak. On the other hand, such
modelling is probably necessary to detect a weak response
in the tail of a larger one. Further, we have not really con-
sidered the relative merits of employing different infor-
mation theoretic criteria to make a decision on the
number of returns. Finally, we observe that we have not
combined the results of the several spectra, either in
making a decision about the nature of the return or in
making a higher level decision about target identity.
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