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Abstract—Time-correlated single-photon counting techniques
have been applied to time-of-flight ranging and imaging. This arti-
cle describes recent progress in photon-counting systems perform-
ing surface mapping using point-by-point acquisition of nonco-
operative targets at short ranges of the order of 1–50 m, as well
as measurements on distributed targets at longer ranges of the
order of a 100 m to a few kilometers. We describe the measure-
ment approach, the signal analysis methodology and algorithm
selection.

Index Terms—Avalanche photodiodes, distance measurement,
imaging, laser radar, Markov processes, maximum likelihood esti-
mation, Monte Carlo methods.

I. INTRODUCTION

THERE is an increasing need for three-dimensional imaging
systems to acquire range and surface profile data for a num-

ber of industrial and defense applications [1]. These applications
include: surface mapping for metrology and reverse engineer-
ing in the aerospace and automotive industries, the scanning of
architectural structures, the creation of virtual reality environ-
ments for numerous end applications, and low-light level and
eye-safe ranging and target identification.

The technique of time-correlated single-photon counting
(TCSPC) has been applied to these applications using somewhat
different implementations [2]–[5]. In general, a picosecond-
duration laser pulse is directed toward a noncooperative target
and a single-photon detection system is triggered by the scat-
tered optical return. Since each photon return can be regarded
as an independent measurement of the photon return time, the
collection of multiple returns (typically >105 return events) can
yield time measurements with considerably shorter time resolu-
tion than the system jitter, which is typically tens of picoseconds.
The good depth resolution means that surface profile detail can
be measured and that distances between reflecting surfaces can
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be resolved. The highly repetitive nature of such an approach
is ideal for low scatter surfaces and surfaces at oblique angles.
In addition, the use of photon-counting technology can mean
that the average power of the output laser can be sufficiently
low for eye-safe and low-light level operation, a desirable factor
in a number of applications, including those that are defense-
related. Arrayed detection systems, or a scanning approach using
an individual single-photon detector, can be employed for full
three-dimensional analysis of scenes. This article concentrates
on time-of-flight photon-counting systems using individual op-
timized single-photon avalanche diode detectors, although the
basic principles of photon counting have also been used to form
three-dimensional depth images using arrays of semiconduc-
tor single-photon detectors [4], [5] and single-photon counting
microchannel plates with crossed delay lines [3].

In Section II, we describe a prototype photon-counting system
designed for very accurate depth measurement at short range,
aimed primarily at applications in metrology. In Section III, we
describe a system designed for kilometer ranges, with potential
for large-scale site measurement and defense applications. In
Section IV, we summarize the principal signal processing al-
gorithms that we have applied to the TCSPC data, in general,
applicable to both these sensors. We also present an evaluation
of the respective system and algorithmic performances, applied
to photon-counting data returned from single surfaces, as well
as multiple or distributed surfaces.

II. SHORT-RANGE TIME-OF-FLIGHT

PHOTON-COUNTING SYSTEM

Our first laboratory-based experiments were performed in
1996 [2], and were primarily concerned with the demonstration
of the basic principle. Although photon-counting time-of-flight
had been used previously with retroreflective targets, most no-
tably in satellite laser ranging [6], this demonstration attempted
to establish whether the technique could be applied to high
depth-resolution measurements over several meters, consistent
with the application of noncontact reverse engineering of large
mechanical parts.

Time-of-flight ranging using the TCSPC technique relies on
the ability of measuring single-photon events with a timing ac-
curacy of approximately the laser pulse duration. Critically, the
timing accuracy can be improved by repeating the measure-
ments many times (typically 104–106 times) and averaging to
achieve the necessary precision. The target is irradiated by a high
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Fig. 1. Modular representation of photon-counting time-of-flight system. The
dashed lines indicate optical paths while the solid lines indicate electrical con-
nections. The “Start” and “Stop” channel for the timing measurement may
be reversed depending on the type of acquisition hardware used. BS, optical
beamsplitter; APD, avalanche photodiode.

repetition rate pulsed laser source, typically operating at a rep-
etition frequency of 1–100 MHz, and the scattered return from
the target is sensed by a single-photon detector. The sources
used in these experiments were generally pulsed semiconductor
lasers, typically outputting optical pulse energies of 1–100 pJ.
The scattered return must be sufficiently attenuated so that the
probability of a photon event is <5% per pulse. Assuming that
the measured data is normally distributed, if the error on a single
timing measurement is σ, then the error, x, on the mean of N
measurements must be

x =
σ√
N

. (1)

Of course, such dependence means that even for 106 counts,
we can expect time resolution of the order of hundreds of fem-
toseconds for a 100-ps jitter TCSPC system, in the absence of
systematic errors. In practice, we have previously demonstrated
depth resolution of less than 30 µm from such a system [7].

For reverse engineering of meter-dimensioned objects, a time-
of-flight system based on TCSPC was developed. This sensor
is based on the system shown schematically in Fig. 1. A pulsed
semiconductor laser illuminates an object, with a small frac-
tion of the beam directed to a linear multiplication avalanche
photodiode to provide a start signal for the timing process. The
remainder of the optical output is directed to the target and
scattered returns are detected by the single-photon avalanche
diode (SPAD) detector. The signal from these photon events
is used to stop the timing process, and the output of the time
differences between start and stop signals is displayed as a his-
togram. In practice, the system jitter is not the only possible
source of error, and one major source can be drift, which man-
ifests itself as a movement of the instrumental response along
the time axis. Although the timescales of the drift tend to be rel-
atively slow—greater than hundreds of milliseconds—this can
affect measurements of ∼100-ms duration or longer. To mini-
mize the deleterious effects of drift on depth measurements, we
introduced a fixed reference surface and then made the depth
measurements between the return signals from each surface, as
shown in Fig. 2. Any unpredictable drift during a measurement
period means that both return signals are affected simultane-
ously, thus reducing the effect of this systematic error on the

Fig. 2. Histogram of photon counts against bins using the short-range sensor
described in Section II. In this example, 4096 bins of 2.44 ps per bin are illus-
trated. The histogram shows the target (left) and reference (right) response used
to reduce the effects of drift in the timing system and provide an instrumental
response.

depth measurement. In practice, the reference is delayed opti-
cally using a short length (a few meters) of fiber optical cable in
order to bring the reference return into the same time window
as the target return.

The implementation of this design is described in detail in [8],
and is shown photographically in Fig. 3. The system was con-
structed using an anodized aluminum alloy baseplate, which was
formed from a solid block of dimensions 260 mm × 210 mm ×
100 mm, with the optical axes formed by V-grooves cut using
a computer-controlled milling machine. The pulsed laser used
was a passively Q-switched AlGaAs laser diode [9] developed
at the A.F. Ioffe Institute, St Petersburg, Russia. This laser emit-
ted pulses at the 850-nm wavelength of between 10- and 20-ps
duration and of pulse energy 7–10 pJ. The clean temporal pulse
shape of these lasers complemented the use of the actively-
quenched shallow junction Si SPAD detectors [10]–[12]. Such
detectors are capable of 20-ps resolution timing at count rates
in excess of 106 per second. An advantage of these detectors
in this application is their small active area (∼7-µm diameter),
which limited the detection of backreflections and ambient light
by spatially filtering in the detector plane. The precise alignment
is performed by placing each component within the accurately
machined V-grooves and then fine-tuning using Risley prisms
that are locked into position after the initial alignment proce-
dure. Additional spectral filtering of ambient light is provided
by optical bandpass filters. The design included a silicon charge-
coupled device (CCD) camera for initial optical alignment. The
collection lens used was a commercially available 200-mm fo-
cal length camera lens (Pentax f /2.8). A Becker and Hickl
SPC-300 data acquisition card was used with this short-range
time-of-flight sensor. The depth repeatability of this sensor is
described in more detail in Section IV.

To produce a scanned three-dimensional image, the entire sys-
tem was placed on a pan-and-tilt head with angular repeatability
of 5 arcsec. This is comparable to the optical spatial resolution
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Fig. 3. Photograph of the photon-counting time-of-flight optical system. This
assembly includes timing photodiode, single-photon avalanche diode, laser
head, Si CCD camera, and all optics used for collimation, beamsplitting, align-
ment, and target return collection.

of the system, which is approximately ∼60µm at 2-m standoff
distance and ∼380 µm at 13 m, limited principally by the laser
spot size of the system.

An example of a typical depth scan is shown in Fig. 4, il-
lustrating a photograph and corresponding three-dimensional
depth scan of an archaeological artefact. This artefact is a cast
made in 1900 of a Roman frieze found in Scotland and dated
second century A.D. In common with many delicate objects, his-
torical artefacts of this nature cannot be subjected to a contact
form of depth measurement, nor the use of potentially damaging
high-power laser sources, making this method of depth profil-
ing ideal for the purpose. Fig. 4(a) shows a photograph of the
artefact and a depth profile of the frieze. The depth profile is a
307 × 230-pixel image with spatial resolution of 1 mm laterally
and approximately 50 µm in depth. More detailed discussion of
data analysis approaches is given in Section IV.

III. MULTIPLE-WAVELENGTH SENSOR FOR KILOMETER-RANGE

DISTRIBUTED TARGETS

The investigation of distributed targets—i.e., those containing
more than one scattering surface—at greater than 1-km range
was investigated by use of a time-of-flight photon-counting sys-
tem designed and constructed specifically for this purpose [13].
The system was also designed with multiple wavelengths in or-
der to test the wavelength dependence of the distributed return
from specific targets, in addition to examining other issues, such
as atmospheric transmission, wavelength dependence of turbu-
lence, and simultaneous acquisition of multiple photon-counting
channels.

The optical system was based around a commercially avail-
able 200-mm diameter aperture Schmidt–Cassegrain telescope,
and is shown schematically in Fig. 5 and described in more
detail in [13]. In this system, a commercially available multiple-
pulsed laser diode system (PicoQuant Sepia) was employed.
This laser system was composed of six individual pulsed laser
diodes operating at wavelengths between 630 and 975 nm. The
laser diode heads, containing collimating optics, were placed

Fig. 4. Photograph of a Roman artefact (upper), and a point-cloud repre-
sentation of a three-dimensional depth image of the same object (lower). The
number of pixels in the depth image is 307 × 230 and the depth resolution is
approximately 50 µm.

Fig. 5. Schematic representation of multiple-wavelength photon-counting
sensor. The target returns from each of the six laser wavelengths are routed
to each of the six SPADs.
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around the circumference of the telescope aperture and pulsed
sequentially, so that only one laser would be operated at any
given time, at an overall maximum repetition rate of 80 MHz.
The collected returns were then coupled into an optical fiber
and transferred to a custom-built optical routing module based
on a plane-ruled diffraction grating, which multiplexed the six
return wavelengths into six optical fibers connected to six indi-
vidual SPAD modules (Perkin Elmer SPCM-AQR-12-FC). The
optical routing module also provided spectral filtering for the so-
lar background, which contributed the majority of background
counts under normal operating conditions.

The six return signal inputs were fed to the photon-counting
acquisition card (Becker and Hickl SPC-600) via an electronic
router. However, the high background count rate resulting from
the solar background under daylight operation meant that these
spurious counts would result in a high proportion of dead time,
resulting in inefficient signal collection. To counter this, an en-
abler circuit was developed, which sequentially allowed the
output of each detector to be transferred to the data acquisi-
tion card, stopping all ambient dark counts outside the laser
pulse window. This circuit consisted of a two-input NAND gate
connected to each detector, with the other input connected to
a synchronization signal derived from the laser driver. The
laser synchronization used in the correct sequence meant that
each detection channel passed only the counts expected in the
time window, thus reducing all dark counts originating in other
detectors.

A number of measurements were taken at ranges of up to
17 km. An example is shown in Fig. 6. The response from a
simple retroreflective target produces a quite different level of
signal and background for each wavelength channel, but, in most
cases, the signal is readily identified. This system was designed
for analysis of scattered returns from distributed targets, and
examples of this are shown in Section IV.

IV. INTERPRETING TIME-CORRELATED PHOTON-COUNT DATA

In general, the performance of a light detection and ranging
(LIDAR) system is a function not just of the optical design, the
choice of detector, and the signal processing electronics, but
also of the algorithms used to process the continuously acquired
or stored data. For a TCSPC system, the data of interest is a dis-
crete histogram of received photon counts in which each “bin”
stores the accumulated returns for a given go-and-return transit
time, directly proportional to the range to the target. In general,
the integrated total of the received photon counts is not just
dependent on the instrumental response, but also on the range
and reflectance of the target, and the atmospheric transmission
path. In tandem with the sensor and detector development, we
have been investigating and developing a range of algorithms
to process the TCSPC data to allow us to improve the detec-
tion rate and measurement accuracy of ranged surfaces, and
better resolve closely separated returns, even when the surfaces
are distant and of poor reflectivity. For a single pixel in a depth
imaging system, or look direction in a spot ranging system, there
may be several returns; this is because the beam may diverge

Fig. 6. Example of six simultaneous measurements for six different wave-
lengths from a corner cube target at 2-km range.

and intersect with several surfaces, or, alternatively, be reflected
from semitransparent surfaces in the same look direction.

In the simplest case, it is possible to obtain a range estimate
by thresholding a prominent signal and reference peak in the
TCSPC histogram, for example, at a fixed percentage of the
peak height, and compute the temporal separation of the cen-
troids of the thresholded data, and, hence, the distance to the
target. An early example of the application of this approach
was to determine the system depth precision from a number of
repeated measurements of a single scattering surface placed at
approximately 1 m from the sensor. An analysis of 20 measure-
ments performed at six different levels of total integrated counts
was made on the basis of this straightforward centroid method—
and the difference in time (and, hence, the distance) between the
target and reference was computed. The distance repeatability
from these experimental measurements is shown in Fig. 7, and
compared to those found from photon-counting data derived
from a Monte Carlo simulation based on the experimentally-
determined instrumental response. The results clearly indicate
the tradeoff between the number of integrated counts and the
depth resolution as described in (1).

This approach has the advantage that it is nonparametric,
i.e., it does not require knowledge of the instrumental response.
If the instrumental response is known, then the results can be
improved by previous matched filtering of the histogram with
that response, improving the signal-to-noise ratio in an optimal
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Fig. 7. Depth repeatability in terms of both time and distance as a function of
integrated counts. Experimental results are shown in comparison to data derived
from a Monte Carlo simulation. In both cases, the centroid method is used for
data analysis.

fashion assuming that the Poisson noise can be approximated
by a Gaussian function at high return levels.

However, this type of approach is not adequate for returns
that are comparable to, or even below, the background level,
since simple thresholding of the data fails to distinguish signif-
icant peaks. Further, if the histogram contains merged returns
from closely separated surfaces, then this method fails to re-
solve the two peaks. The instrument used for a matched filter is
no longer appropriate, and the centroid calculation is displaced
to some point intermediate between the two real surface re-
turns. For these reasons, we have developed more sophisticated
approaches to process the TCSPC data.

Hence, assuming, in general, that there may be more than one
return in a single pixel, the measured histogram, F (i, φ), is a
statistical mixture from k returns

F (i, φ) =
k∑

j=1

fj (i, φj ) + B (2)

in which we use a set of four piecewise exponential (PE) func-
tions to model the instrumental response of a single return

f(i, φj )=β




e

(
−(i1−i0)2

/
2σ 2

)
e

(
(i−i1)

/
τ 1

)
i≺i1

e−(i−i0)
2
/
2σ2

i1≤i≺i2

e

(
−(i2−i0)2

/
2σ 2

)
e

(
−(i−i2)

/
τ 2

)
i2≤i≺i3

e

(
−(i2−i0)2

/
2σ 2

)
e

(
−(i3−i2)

/
τ 2

)
e

(
−(i−i3)

/
τ 3

)
i≥i3 .

(3)

This instrumental response is based on the characteris-
tics of the SPAD detector, and was presented originally in
[14]. The parameter B represents the background photon-
count level. The parameter set for a single return is φj =
{β, σ, i0, i1, i2, i3, τ1, τ2, τ3}j . In the methods that we have de-
veloped, we have generally kept this fixed when processing
multiple returns, only allowing the parameter vector to vary for
single surfaces. This is due to the complexity and the ill-posed
nature of the problem. For example, if a response broadens, it is
not determinable without prior knowledge whether this is due
to a change in the parameter vector or to interaction of the beam
with a surface distributed in space. Hence, the prior knowledge

we would use is that the instrumental response is fixed. In the
case of the metrology system, of course, we have a continuous
instrumental return available from the fiber, so we can in theory
change the parameter vector as we process the unknown data.

The number of photons, ci , in bin i, is considered as a random
sample from a Poisson distribution

P (ci) = e−F (i, φ) F (i, φ)ci

ci !
. (4)

For a single histogram, we wish to determine the number of
surface returns, the amplitude and time of arrival of each of
these returns, and the return parameter vector, when allowed
to vary from a reference (instrumental) response. In the next
sections, we present increasingly complex and effective methods
to achieve these goals.

A. Scale-Space Filtering and Maximum Likelihood Estimation

In the first approach, described fully in [15], we first apply
a scale-space filtering [16], or bump hunting [17] procedure,
that provides an initial estimate of the number, amplitude, and
positions of the suspected returns. Depending on the amplitude
and separation of discrete returns, a histogram of many returns
may be multimodal or multitangential (implied by multimodal-
ity). Therefore, the TCSPC histogram is filtered by Gaussian
derivative filters of progressively decreasing scale, i.e.,

G(i, h) =
1√
2πh

e−i2/2h2
, G′(i, h) =

i√
2πh3

e−i2/2h2

G′′(i, h) =
(i2/h2 − 1)√

2πh3
e−i2/2h2

. (5)

We then detect peaks in the first and second derivatives, rather
than rely solely on zero-crossings in the first derivative [16]. This
arises primarily from the desire to detect multiple returns when
indicated only by multitangentiality, where zero crossings do
not exist in the first-derivative filtered data. Fig. 8 illustrates
this procedure on a simulated response that has four returns,
the first three of which merge into a single mode on the left of
Fig. 8(a). In the first derivative, shown in Fig. 8(b), smoothed
with a kernel width of h equal to 12 bins, there are zero-crossings
corresponding to the modes at 235 and 500 bins. Combining an
analysis of the first with the second derivative, we see that when
the first derivative is positive, a negative peak in the second
derivative shows an additional return (at 184 bins). When the
first derivative is negative, a positive peak in the curvature shows
an additional return (290 bins). Hence, in this example, the
prediction of the scale-space filtering procedure is of four peaks
at 184, 235, 290, and 500 bins, respectively.

The scale-space filtering gives an ordered (by amplitude) list
of possible peak positions and amplitudes. Next, we use an itera-
tive procedure in which we add peaks from this list progressively
and maximize the likelihood of the estimate of the parameters,
φ, in the mixture model

L(c | φ) =
N∏

i=1

F (i, φ)ci e−F (i, φ)

ci !
. (6)

As it is not possible to have negative counts, and because the
product term tends to zero, we minimize −2 ln L(c/φ) as is the



BULLER AND WALLACE: RANGING AND THREE-DIMENSIONAL IMAGING USING TIME-CORRELATED SINGLE-PHOTON COUNTING 1011

Fig. 8. (a) Simulation of four closely spaced returns with background, using
Poisson statistics. (b) Smoothed data using a Gaussian of width 12 bins, and the
first and second derivatives.

common practice [18]. The final term, ln(ci !), is omitted as it
is constant

−2 ln L(c | φ) = 2
N∑

i=1

[F (i, φ) − ci ln F (i, φ)]. (7)

In general, there is a tendency to overfit the data, as adding
more and more returns to fit the Poisson-distributed background
can decrease the log-likelihood function. This should decrease
rapidly, then remain approximately constant when the optimum
interpretation of the number of returns is reached; at this point,
we conclude the iterative process and return the final solution.

Considering Fig. 8, the final result from a maximum like-
lihood estimate is of four peaks of amplitudes 95.61(100),
69.65(45), 38.91(50), and 38.91(50), respectively (the true val-
ues are shown in parentheses). The positions were found to
be 237.79(235), 284.86(290), 179.32(184), and 501.19(500),
respectively. The background level was computed as 5.92(5)
counts. Fig. 9 shows two details taken from full histograms
taken from a single corner cube at a distance of 17 km in
daylight conditions using the multispectral sensor described in
Section III. In each case, the spectral channel was at 630 nm and
the collection time was 100 ms. The maximum likelihood esti-
mate was of amplitude 31.09 counts at a position of 234.41 bins

Fig. 9. Two examples of processed data from the multiple-wavelength sensor
using the scale-space filtering (bump-hunting) and maximum likelihood estima-
tion. (a) 841 nm, collection time 1s. (b) 780 nm, collection time 0.1˜s, both at a
range of 17 km.

with a background of 1.03 counts. In Fig. 9(b), the single return
was of amplitude 6.71 counts at 217.07 bins, with a background
of 1.03 counts.

B. Reversible Jump Markov Chain Monte Carlo Processing
(RJMCMC)

Although the approach described in the previous section has
been shown to be effective in many cases, this fails when the
returns have amplitudes significantly lower than the background
level, or if the returns are so closely separated that the estimation
merges two returns into one. Therefore, we have progressed to
apply MCMC and RJMCMC algorithms [19] to process TCSPC
data, as reported in [20] and [21]. MCMC is a powerful simu-
lation algorithm that allows us to find a stationary distribution,
which is the posterior distribution of the parameters given the
data (target distribution). This method is applicable to find the
parameters for a known number of returns. However, RJMCMC
techniques allow us to “jump” between different dimensional
spaces, wherein our application of the dimension is determined
by the number of returns. In one “sweep” of the RJMCMC algo-
rithm, we have two steps. The first step is a parameter updating



1012 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 13, NO. 4, JULY/AUGUST 2007

Fig. 10. Three examples of photon count distributions for two separated corner
cubes at a standoff distance of 330 m at three different separations. Also shown
are the solutions from the RJMCMC method, applied to find the number and
separation of the returns. (a) The peaks are distinct and, hence, the actual return
and the two predicted positions of the two returns are almost exactly overlaid.
(c) Shows the return and calculated separation of the two returns for an actual
corner cube separation of 1.7 cm.

step, with fixed dimension, that improves the estimates of the set
of amplitudes, time of arrival, and background parameters. The
second is a dimension-changing step that allows jumps between
spaces of different number of peaks. This can be either the birth
of a new peak, the death of an existing peak, the splitting of

Fig. 11. A comparison of the three methods for measuring the separation of
the corner cubes in comparison with ground truth (using the ruled gage).

an existing peak into two peaks, or the merging of two existing
peaks into one peak.

A proposed move is accepted with the general probability

αm (k, φ, k, φ′)

= min




1,

target ratio

π (k′, φ′ | x)
π (k, φ | x)

×
proposal ratio

qm (k′, φ′, k, φ)
qm (k, φ, k′, φ′)




(8)

where αm is the acceptance probability for a move from (k, φ) to
(k ′, φ′), k is the number of peaks, and φ is the parameter set for k
peaks. π is the target distribution, x the data distribution, qm the
proposal distribution, and the subscript m denotes the type of
move. For parameter updating at a fixed number of returns, this
reduces to the conventional Metropolis–Hastings probability

α (φ, φ′) = min




1,

target ratio

π (φ′ | x)
π (φ | x)

×
proposal ratio

qm (φ′, φ)
qm (φ, φ′)




. (9)

We have used a Gamma function for the proposed distribu-
tion of the amplitude and background parameters, dependent
on the current values of β and B, respectively. The proposed
distribution for i0 is a normal distribution that is also dependent
on the current value. The birth/death and split/merge moves re-
quire a change of dimension and, therefore, RJMCMC is used.
Considering the birth–death moves, the acceptance probability
becomes

αm (k, φ, k, φ′)

= min




1,

target ratio

π (k′, φ′ | x)
π (k, φ | x)

×
proposal ratio

rm (φ′)
rm (φ) q(u)

×

∣∣∣∣∣∣

Jacobian

δ (Φ′)
δ (Φ, u)

∣∣∣∣∣∣




(10)

where rm (x) is the probability of choosing move-type m when
in state φ, u is a vector of continuous random variables that
ensures the reversibility of the deterministic function φ′ = h(φ,
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Fig. 12. A comparison of results for the BH-MLE (upper) and RJMCMC
(middle) methods. The bottom graph shows the a posteriori distribution of the
number of returns for the RJMCMC method, showing a clear probability of five
peaks.

u), which allows the move to a higher-dimensional space and
q(u) is the probability density function of u. The Jacobian term,
arising from the change of variable from (φ, u), to φ′, ensures
the dimension balancing condition that allows reversible jumps
between different dimensions of k. As in the previous section,
the only a priori information that we assume is the instrumental

TABLE I
COMPARISON OF BH-MLE AND RJMCMC DATA ANALYSIS METHODS

response of the detector. The positions and amplitudes of the
returned signals are drawn from appropriate prior distributions
as explained in [20]. The number of peaks is usually set high to
allow the algorithm to explore the whole space of solutions. A
noninformative flat prior distribution is used for the number of
peaks to reflect lack of knowledge about the number of returns.

We show results from experiments that demonstrate the im-
proved performance of the RJMCMC method in comparison
with the earlier bump hunting/scale-space filtering (BH-MLE)
and centroid approaches. In Figs. 10 and 11 are shown the re-
sults from a series of trials in which two retroreflecting corner
cubes were placed at a distance of 330 m from the multiple-
wavelength TCSPC sensor. The separation of these cubes was
varied between 1.7 and 71.2 cm using a ruled gage. Applying
each algorithm, we constrained the possible solutions to either
zero, one, or two peaks. Fig. 10 shows the final stable measure-
ments from the RJMCMC estimation at several distances; the
algorithm is able to resolve the two surfaces even at the smallest
resolution shown of 1.7 cm, although this is not obvious to the
human eye. Fig. 11 compares the RJMCMC approach to the
BH-MLE and centroid methods. Whereas the centroid method
was unable to determine the separation of peaks below 5.2 cm,
even with full a priori knowledge that two peaks were indeed
present, both the BH-MLE and RJMCMC methods were able
to do better than this. However, the RJMCMC method was able
to determine the separation of peaks much more accurately at
the smallest separation, seen clearly in the inset of Fig. 11 at an
enlarged scale.

In addition to running a series of trials on real data, we have
also performed systematic evaluation and comparison of our
several algorithms using synthetic data. For these experiments,
we generated a number of distributed (in position) returns of set
amplitude and background level. The algorithms had no a priori
knowledge of the numbers of returns or their parameters, except
that a fixed instrumental response was used for (3). Fig. 12
shows the results of one such simulation and a comparison of
the results from the BH-MLE and RJMCMC methods. Table I
illustrates the true and estimated values for each of the methods.
The distributions and the table show that, even when we do
not have any a priori knowledge of the number of returns,
the RJMCMC is able to infer the exact number of peaks, their
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Fig. 13. A multilayered depth image of a cat figure inside a glass box. The
top image shows a photograph of the cat, which has variable surface reflectivity,
within the enclosure. The lower image shows that three distinct surfaces can be
imaged, the front surface, the cat figure, and the surface behind the cat.

amplitudes, and their positions. In this case, it should be noted
that the returns are very weak in comparison with the data of
Fig. 10. In contrast, the BH-MLE algorithm fails to estimate the
correct number and positions of peaks.

In Table I, to allow a comparison between the two methods,
we have chosen to show the corresponding results for five peaks
for the BH-MLE method, rather than using the log-likelihood
function to set the threshold. Reading across the rows of the
table, the much superior results from the RJMCMC method are
evident. In the particular measurements used in this analysis,
the system had been upgraded to include an adapted Perkin-
Elmer detector, which had modifications to the single-photon
detection circuitry [22] to improve jitter. With this modified
detector and use of the RJMCMC algorithm, surface-to-surface
depth resolution of 1.7 cm could be obtained at a distance of
330 m [23].

Fig. 13 illustrates an example of the application of the RJM-
CMC method to a full-depth image acquired by the sensor of
Fig. 3, originally presented in [24]. In this case, there were re-
flections from the first surface of glass box, from a porcelain cat
figure inside the box, and from the glass layer behind the cat.
The consequent image is multilayered, although, in the majority
of cases, there is a difficulty in detecting the first glass peak due
to the predominantly specular nature of the reflection, i.e., the

incident laser light was not scattered back toward the detector.
In the middle portion of the cat, nearest normal incidence, both
glass and cat surfaces are detected. Using this data, the distance
between the glass surfaces was 18.0 cm, consistent with the
measured distance using a ruled gage.

V. CONCLUSION

This paper describes progress in time-of-flight ranging and
imaging using TCSPC with point-by-point acquisition. The
technique is fundamentally flexible: the tradeoff between the
integrated number of counts (or acquisition time) against range
repeatability or depth resolution allows its application in a num-
ber of diverse fields. The inherent time gating of the technique,
allied to the spatial filtering provided by small active area, single-
photon detectors, can lead to operation under high ambient light
conditions even with low average optical power sources.

We have demonstrated examples of three-dimensional imag-
ing of meter-dimensioned objects where reverse engineering
methods using cooperative targets cannot be routinely em-
ployed: e.g., mechanically delicate objects, or objects with more
than one reflective surface. Using more advanced signal process-
ing algorithms, we have been able to improve the system perfor-
mance markedly, as measured by the depth resolution at short-
and long range. Furthermore, the application of the BH-MLE
and RJMCMC methodologies has allowed us to characterize
the positions and amplitudes of multiple returns. Hence, the
approach can be used for characterization of distributed non-
cooperative targets at kilometer ranges, even in environments
where covert operation is necessary.

The technique of TCSPC in time-of-flight ranging and imag-
ing applications is poised for more widespread application.
However, to some extent, this will depend on further improve-
ments to data acquisition hardware and detector performance,
particularly in terms of jitter and detection efficiency. For some
applications, however, it may result in more extensive infrared
coverage.
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